Atlantic ocean heat transport enabled by Indo-Pacific heat uptake and mixing

Ryan Holmes
Senior Research Associate, Climate Change Research Centre, ARC Centre of Excellence for Climate Extremes and the School of Mathematics and Statistics, UNSW

Jan Zika, Raffaele Ferrari, Andrew Thompson, Emily Newsom and Matthew England
Ocean Heat Uptake and Climate Change

- More than 90% of excess energy is absorbed by the ocean (+30% of anthropogenic carbon)
- Leads to sea level rise via thermosteric expansion (~1/3 of total)
- Adjustment is slow due to time-scale for transport to intermediate/deep ocean
- Uncertainties around spatial structure – processes not fully understood

Energy accumulation in different components of the Earth System relative to 1971 (IPCC AR5 WG1 Chapter 3)

0-700m 1971-2010 temperature trend (a) longitude-latitude and (b) zonally-averaged (IPCC AR5 WG1 Chapter 3)
Natural variability

- Climate change is modulated by natural cycles (multi-decadal, decadal, interannual, seasonal).
- How are these modes going to change in the future? What will be the regional impacts?
- Would like to be able to predict these changes – which requires a thorough process understanding and good representation in conceptual and numerical models.
Ocean Heat Transport

- Traditionally linked with the general circulation (e.g. density-space MOC). However, reliance on this connection is problematic => sources/sinks, reference energy content

- Recent studies highlight importance of tropical Indo-Pacific

- This study => Precise model heat budget framework independent of reference temperature. Highlights role of mixing and Indo-Pacific - Atlantic connections

Vertically-integrated divergent heat transport (Forget and Ferriera 2019)

Surface buoyancy fluxes in CESM (Newsom and Thompson 2018)
Diathermal Heat Transport

Most heat enters in eastern equatorial Pacific

Equatorial heating + mid-latitude cooling => Poleward heat transport (~2PW)

Heating at SSTs warmer than ~23°C, cooling at SSTs colder than ~23°C => Heat transport from warm to cold temperatures (~1.6PW)

Meridional heat transport is linked to heat transport in temperature space (mixing, surface forcing)

Griffies et al. (2015)
Heat/mass transport in the latitude-temperature plane

Temperature-space MOC

- **Streamfunction** \(\Psi \)
- **SSTC**
- **NSTC**
- **AABW**
- **NADW**

Meridional heat transport

- **20°C Ref**
- **0°C Ref - 273.15°C Ref**

Mass/volume transport below \(\Theta \):

\[
\Psi(\phi, \Theta, t) = \int \int_{\Theta'(x, \phi, z, t) < \Theta} v(x, \phi, z, t) \, dx \, dz
\]

Heat transport below \(\Theta \):

\[
A(\phi, \Theta, t) = \int_{-\infty}^{\Theta} \rho_0 C_p \Theta' \frac{\partial \Psi}{\partial \Theta'} \, d\Theta'
\]

Answer depends on reference temperature
The heat function

$$A = \int_{-\infty}^{\Theta} \rho_0 C_p \Theta \frac{\partial \Psi}{\partial \Theta} d\Theta'$$

$$= \rho_0 C_p \Theta \Psi - \rho_0 C_p \int_{-\infty}^{\Theta} \Psi d\Theta'$$

Heat function (A_I, Ferrari and Ferriera 2011) -> heat transport pathways independent of reference temperature

Heat enters at equatorial latitudes and warm temperatures

Moves down-gradient toward cooler temperatures and poleward

Eventually reaching high-latitudes where it is lost back to the atmosphere

Indo-Pacific and Atlantic contributions

Northward heat transport dominated by Atlantic, relatively uniform with temperature (deep-reaching AMOC)

Indo-Pacific transports heat mainly southward, focused at warm temperatures

Weak transport in Southern Ocean → large exchange from Indo-Pacific to Atlantic

0.4-0.5PW
A process-budget for the heat function

A Walin (1982) heat content budget of temperature layers (Watts relative to 0°C):

\[
\frac{\partial H}{\partial t} (\phi, \Theta, t) = - \mathcal{F} - \mathcal{M} - \mathcal{A}
\]

- \mathcal{F} = \text{Forcing}
- \mathcal{M} = \text{Mixing}
- \mathcal{A} = \text{Transport}
- \mathcal{G} = \text{Diathermal Advection}

Internal heat content budget:

- Independent of reference temperature
- Does not include transformation \(\mathcal{G} \)
- Smoother/more robust (integrated)

\[
\mathcal{H} = \rho C_p \nabla \bar{\Theta} = \rho C_p \nabla \Theta + \rho C_p \nabla (\bar{\Theta} - \Theta)
\]

\[
\mathcal{H}_I = \rho C_p \int_{\Theta}^{\infty} \nabla d\Theta'
\]

Analog with Palmer and Haines (2009)
Diathermal transports: Mixing and Surface forcing

\[\frac{\partial \mathcal{H}_I}{\partial t} = -\mathcal{F} - \mathcal{M} - A_I \]

Hieronymus et al. 2014, Holmes et al. (2019)
Diathermal transports: Mixing and Surface forcing

Surface heat gain in the Indo-Pacific at warm temperatures

Mixing moves heat toward colder temperatures. Largely in Indo-Pacific

Supplies heat at cool temperatures to the South Atlantic

Northward transport through Atlantic to North Atlantic heat loss

Closed budget for internal heat content:

$$\frac{\partial \mathcal{H}_I}{\partial t} = -\mathcal{F} - \mathcal{M} - \mathcal{A}_I$$
Mixing spatial structure

Numerical mixing spatial structure estimated by applying residual method to each individual fluid column.
Summary

Internal heat content budget in latitude-temperature plane allows unambiguous view of diathermal heat flows

60% of the 0.78PW of Atlantic MHT across 50°N is supplied from Indo-Pacific at temperatures above 15°C, ultimately from cold tongue heating

Supports recent studies (Newsom and Thompson 2018, Forget and Ferreira 2019) on role of tropical Pacific

Mixing moves heat from warm wind-driven Indo-Pacific circulation into cold deep-reaching AMOC

Potential for isolating less-reversible component of ocean heat uptake over natural cycles and for model evaluation

More info:
Holmes et al. (2019) minor revisions at GRL
An application to the global warming hiatus

Anomalies years 10-20

Accelerated trade winds = accelerated subtropical *residual* overturning that drives heat poleward

Increased surface heat uptake penetrates to colder temperatures through enhanced upwelling and mixing

0.2PW accumulating in Indo-Pacific – diabatic transfer to colder temperature classes suggests long reemergence time scale